
Secure Names for Bit-Strings

Stuart Haber*
stua.rt@surety.com

W. Scott Stornetta*
scotts@surety.com

I

,
i

/

1

Abstract names.

The increasing use of digital documents, and the need to
refer to them conveniently and unambiguously, raise an im-
portant question: can one “name” a digital document in a
way that conveniently enables users to find it, and at the
same time enables a user in possession of a document to
be sure that it is indeed the one that is referred to by the
name? One crucial piece of a complete solution to this prob-
lem would be a method that provides a cryptographically
verifiable label for any bit-string (for example, the content,
in a particular format, of the document). This problem has
become even more acute with the emergence of the World-
Wide Web, where a document (whose only existence may
be on-line) is now typically named by giving its URL, which
is merely a pointer to its virtual location at a particular
moment in time.

In the traditional world of paper documents, there arc
usually reasonable guarantees of this connection. In the cast
of printed books and magazines, large print runs that arc
the result of single typesetting efforts make it easier to be
confident that all copies of a printed document are the same,
with a definite name printed in a conventional place in the
document. Making a change to a paper document of any
sort, even a small change, typically leaves forensic cvidcncc.

Using a one-way hash function to call files by their hash
values is cryptographically verifiable, but the resulting names
are unwieldy, because of their length and randomness, and
are not permanent, since as time goes on the hash function
may become vulnerable to attack. We introduce procedures
to create names that are short and meaningful, while at the
same time they can persist indefinitely, independent of the
longevity of any given hash function. This is done by naming
a bit-string according to its position in a growing, directed
acyclic graph of one-way hash values. We prove the security
of our naming procedures under a reasonable complexity-
theoretic cryptographic assumption, and then describe prac-
tical uses for these names. An implementation of our naming
scheme has been in use since January 1995.

A characteristic feature of digital documents, by con-
trast, is that they are easy to copy and to alter. The naming
problem is especially troubling if the document exists only
on-line and never in conventional paper-based form. For on-
line documents, a useful naming scheme would allow users
to employ the name to find documents, as well as to check
the integrity of the documents that they find. A number of
proposals have been made for such naming systems (see e.g.
[SM 94, KW 95, BDf 951). These proposals address in dif-
ferent ways the problem of how to “resolve” the name into
a location where the document might be found.

It is the integrity-checking problem that we address in
thii work: how to make sure that the bit-string content
of a given digital document is indeed the same u the bit-
string that was intended. Heretofore, two different sorts of
mechanisms have been proposed, digital signatures and one-
way hash values.

Having the author or publisher of a document compute a
digital signature for its bit-string content is a reasonable use
of cryptographic tools for this purpose. (See, for example,
[R 95, M 941.) However, the abiity to validate many digital
signatures requires the presence of a public-key infrastruc-
ture, and the trustworthiness of the validation procedure
relies on the assurance that the signer’s private signing key
is indeed secure. For some on-line documents, the infras-
tructure and these assurances may not be available. For
long-lived documents, the security of the binding between
a public key and the person or role of the putative signer
becomes even more problematic. (A general solution to the
latter problem is briefly described in $5.)

1 Introduction

Users of documents need to refer to those documents in or-
der to keep records and in order to communicate with other
users of the documents. In practice, users name their doc-
uments in various ways. A name must be unambiguous, at
least in the context of its use; this requires some connec-
tion between the name and the integrity of the document it

*Surety Technologies, 1 Main Street, Chatham, N.J. 07928, U.S.A.

Pernkion to make digitnlkud copies ofnll or part ofthis material for
personnl or classroom use is granted without fee provided lhnt lhe copies
nre not made or distributed for profit or commercial advantage, the copy-
right notice, ihe title of the publicntion and its date appear, and notice is
given that copyright is hy permission ofthe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists. requires specific
permission n&or fee
CCS 97. Zurich, Switzerlnnd
Copyright 1997 ACM O-89791-912-2/97/04 ..S3.50

Thus it would be useful to have an integrity mechanism,
depending on the exact contents of the bit-string in question,
that does not depend on the secrecy of a cryptographic key.
A natural choice for such a mechanism is the use of a one-
way hash function, naming any bit-string by its hash valnc.
(See, for example, [BD+ 951.) However, while this method
is intrinsically verifiable, there are several inconvenient lea-
tures:

l A desirable feature for the names given to a collection

28

I

,

I -
-- -. --._---

-._ ;
~---Y-i‘-- -- _.

. ,; _’ ,.’ ,;
-- _

of objects is that they be long-lasting, if not perma-
nent.. (This is one of the functional requirements for
URNS [SM 941.) But as technology advances, any par-
ticular choice of a presumably one-way function for a
naming scheme becomes less secure, so that it must be
replaced (see [Dob 96a, Dob 96b]).r The unpleasant
result is that the name of a long-lived document will
need to change over time.

l Hash values are too long for a human user to remember
or even to communicate easily to another human being.
(For esample, it is currently recommended that one-
way hash functions compute outputs that are at the
very least 128 bits long; this is the output length of
MD5 [Riv 921. In a 6 bit/character encoding, this is
22 alphanumeric characters long.)

l The author of a bit-string document has no control
over the form of its name. A one-way hash function
produces a random-appearing bit-string of the appro-
priate length as the hash value of a document. Thus,
inconvenient as it may be for the author, there mill be
no connection between the names of documents that
are related to each other, either in form or in sub-
stance.

This paper presents a method for naming bit-strings that
retains the verifiable security of hash-based names, while
avoiding the constraints listed above, as well as avoiding the
use of secret, cryptographic keys. The method is a variation
on the digital time-stamping schemes of [HS 91, BHS 931.
In summary, the essence of the new scheme is to keep a
repository of hash values that depend on many bit-string
inputs, and to name each bit-string by a concise description
of a location in the repository to which it can be securely
“linked” by a one-way hashing computation.

An implementation of our naming scheme has been run-
ning continuously since January 1995 [Sur 951.

The rest of this paper is organized as follows. After tech-
nical preliminaries in $2, including both a brief discussion
of the wider problem of naming digital documents as well
as a formal description of our sub-problem, we present our
scheme and prove its security in $3. Motivated by the explo-
sive growth of the Internet, we mention a number of possible
applications of our scheme in $4. In $5, we describe a method
for extending the lifetime of our digital names beyond the
cryptographically secure lifetime of the hash functions used
to compute them. Finally, we discuss several different sorts
of practical implementation in $6.

2 Preliminaries

2.1 Naming digital documents

A naming system for digital documents should perform (at
least) two functions. It should help the user (1) to find the
document named; and (2) to reassure himself or herself that
a given document is indeed the correct one, i.e. that it is
indeed a perfect copy of the document that was intended.

To enable both these functions, the “name” could include
both identification information as well as location informa-
tion. System design may include procedures for registration
of new documents, for finding a document given its name,

‘For example, because of recent attacks on MDS, RSA Laborato-
ries recommends that “in the future MD5 should no longer be imple-
mented in signature schemes, where a collision-resistant hash function
IS required” [Dob 96c].

29

for updating a document’s location information, and for val-
idating the integrity of a document. Typically, there is a
server that “resolves” or translates a name into location in-
formation, for example into a URL or a list of URLs. The
name may include other information about the document,
including such data as title, author, format, price, and ac-
cess privileges.

A large body of work has been devoted to the difficult
problem of designing and building a naming system of this
sort so that it is usable, useful, and reliable. In [SM 941
a set of functional requirements is described for Uniform
Resource Names (URNS), the names to be assigned by a
naming system for resources on the Internet. A number
of researchers have built naming systems, including, among
others, [KW 95, BD+ 951. (This is by no means an exhaus-
tive list.)

In this work we propose a new method for the integrity-
checking piece of naming systems for digital documents. All
previously proposed systems that included mechanisms for
checking the integrity of the bit-string or bit-strings that
make up a digital document have used either digital signa-
tures or one-way hash functions for this purpose. For certain
applications, these methods have the problems described in
$1 above.

2.2 Hash functions

The principal technical tool we use in this paper is that
of a one-way hash function. This is a function compressing
digital documents of arbitrary length to bit-strings of a fixed
length, for which it is computationally infeasible to find two
different documents that are mapped by the function to the
same hash value. (Such a pair is called a collision for the
hash function.)

Practical proposals for one-way hash functions include
those of MD5 [Riv 921, SHA-1 [NIST 941, and RIPEMD-
160 [DBP 961. Though the actual security of these functions
(i.e., the precise difficulty of computing collisions for them)
is not known, they are now in more or less widespread use.

Definition In a more theoretical vein, Damgird defined
a family of collision-free hash functions to be a family { Hk}k
of sets of functions (indexed by a security parameter k) with
the following properties:

1. Each Hk is a set of functions h : (0, l}* --, (0, l}” that
are computable in polynomial time.

2. Given Ic, it is easy to choose h E Hk at random.

3. It is computationally infeasible, given a random choice
of one of these functions, to find a collision for the
function. More precisely, for any polynomial algorithm
A, for any positive constant c,

Pr[h + Hk; (2, z’) * A(h) : x # z’, h(z) = h(d)] < k-”

for sufficiently large k.

Damgard gave a constructive proof of their existence, on
the assumption that there exist families of one-way “claw-
free” permutations [Dam 871. More generally, any “one-way
group action” is sufficient [BY 901. Concretely, the construc-
tion can be based on the difficulty either of factoring or of the
discrete logarithm function. (As usual, the collision adver-
sary A in condition (3) above can be uniform or non-uniform,
depending on the precise form of the hypothesis made on the
computational complexity of the underlying problem.) For

-- I_ ---.--

a variety of reasons, none of the known theoretical construc-
tions of collision-free hash functions are practical.

In practice, the infeasibiity of computing collisions for a
particular hash function depends on the current state of the
art, both the current state of algorithmic knowledge about
attacking the function in question, as well as the compu-
tational speed and memory available in the best current
computers. As the state of the art advances, it is likely
that a function that was once securely one-way will even-
tually cease to be so. For example, Dobbertin’s recently
announced attacks on MD4 and MD5 have considerably re-
duced the community’s confidence in the strength of these
two functions [Dob 96a, Dob 96b, Dob 96c]. In $5 below we
offer a solution to the problem this poses for certain practi-
cal systems whose real-world security depends on the actual
infeasibility of specific computational tasks.

We refer the reader to [Pre 931 for a thorough discussion
of one-way hash functions.

2.3 Theoretical model

We emphasize that thii is a theoretical description of the
problem of verifiably “naming” bit-strings, which is only a
piece of the larger problem of naming digital documents.

The setting for our problem is a distributed network of
parties. The network may include a server S as well as a
repository R; parties may query the repository, asking for a
copy of a particular item it contains.

Definition A naming scheme for this setting consists of:

a security parameter k;

a polynomial-time naming protocol N, possibly requir-
ing interaction with the server S, taking as input a
bit-string x, and producing as output a name n for x,
a certificate c, and the addition of items to the repos-
itory R; and

a polynomial-time validation protocol V, that takes as
input a triple (x, n, c) and the result of a query to R,
and either accepts or rejects its inputs.

If (n, c) is the output of an invocation of N on input z, then
V accepts the input (2, n, c) when it is accompanied by a
correct response to a query to R.

It is possible, of course, to specify a naming scheme that
does not require a server or a repository. In that case, the
naming protocol and the validation protocol may simply be
algorithms that any party in the network may invoke with-
out interacting with outside parties.

Definition A counterfeiting adversary to anaming scheme
[N, V, s] is a (possibly probabilistic) algorithm A that per-
forms as follows. Given I; as input, A produces (polyno-
mially many) naming requests x1, x2,. . .; for each 2; A is
given the output of N(z;). The request zi+r may be com-
puted after A has received the response to its ith request.
In addition, A may make (polynomially many) queries to
R. Finally (after q naming requests, say), A’s output is of
the form (z, n, c). This output is a successful counterfeit if
x # xt (for i = 1. . . q) and V accepts (x, n, c) (after a correct
response to any queries to R).

Definition A naming scheme is secure if for any poly-
nomially bounded counterfeiting adversary A and for any
positive constant c, A’s success probability on input k is
less than k-’ for sufficiently large I;.

30

To illustrate our definitions, here is a simple example of
a naming scheme, where the only role of the server is to
announce its random choice of a hash function lr E 11~~. The
naming procedure is just N(x) = h(x) with no certificates,
and V accepts (x, n) if n = h(x). It is clear that this dclines
a secure naming scheme as long as Hk is the kth set in a
family of collision-free hash functions.

We remark that the roles of S as trusted server and R
as trustworthy repository in these definitions are just an
artifact of how we have chosen to present and to analyze
our naming schemes, allowing a clean separation between
issues of the security of the scheme itself and issues of how
it might be implemented in practice. I

2.4 Digital time-stamping

Our solution to the naming problem builds on the work of
[HS 911 and [BHS 931, w h ose authors describe several pro-
cedures with which users can certijy (the bit-string contents
of) their digital documents, computing for any particular
document a time-stamp certificate. Later, any user of the
system can validate a document-certificate pair; that is, he
or she can use the certificate to verify that the document
existed, in exactly its current form, at the time asserted in
the certificate. It is infeasible to compute an illegitimate
document-certificate pair that will pass the validation pro-
cedure.

Because we use it directly in our naming scheme, we
summarize here one digital time-stamping scheme. A ccn-
tral “coordinating server” receives certification requcsts-
essentially, hash values of files-from users. At regular in-
tervals, the server builds a binary tree out of all the requests
received during the interval, following Merkle’s tree authcn-
tication technique; the leaves are the requests, and each
internal node is the hash of the concatenation of its two
children [Merk SO]. The root of this tree is hashed together
with the previous “interval hash” to produce the current in-
terval hash, which is placed in a widely available repository,
The server then returns to each requester a time-stamp ccr-
tificate consisting of the time at which the interval ended,
along with the list of sibling hash values along the path lcad-
ing from the requester’s leaf up to the interval hash, each
one accompanied by a bit indicating whether it is the right
or the left sibling. The scheme also includes a validation
procedure, allowing a user to test whether a document has
been certified in exactly its current form, by querying the
repository for the appropriate interval hash, and comparing
it against a hash value appropriately recomputed from the
document and its certificate.

It is noteworthy that the trustworthiness of the c&ill-
cates computed in this scheme depends only on the integrity
of the repository, and not (for example) on trusting that a
particular private key has not been compromised or that
a particular party’s computation has been performed cor-
rectly.

3 A naming scheme for bit-strings

Next we describe a naming scheme for a network that in-
cludes a server S and a repository R. Many executions of
N and of V may be performed concurrently in the network.
We assume that there exists a family { Hk},: of collision-frco
hash functions. Given an initial choice of security param-
eter I;, S announces to all parties its random choice of a
one-way hash function h c Hk. Our scheme is a variation
on the time-stamping scheme described in $2.4 above, with

I_---- - --.1_ ------ - ,,---- ,. ----

1 _ -~ .,I”,,
‘C i

S playing the role of the coordinating server that computes
certificates in response to requests and makes additions to
the repository R.

We abbreviate a bit-string’s certificate by omitting the
list of hash values, leaving only a pointer to the relevant
interval hash (for example, the time at which it was com-
puted), and an encoding of the position of the request in
t.he tree for that interval (for example, the sequence of left
or right bits). It is thii abbreviation that we propose to use
as the name of the bit-string.

More explicitly, an invocation of N on input 2: begins
with the comput.ation of y = h(z), and the submission of y
to S, which includes y as one of the leaves of the tree being
built in bhe current time interval. At the end of the interval,
having built a tree of height 1 (that includes the previous
interval hash), S places the root of the tree in R as the
current. interval hash with label t, say. S responds to the re-
quest. by returning the certificate c = [t; (21, bl), . . . , (21, bl)],
where each b, = L or R. Finally, the name returned by N
for argument x is It = [t; bl, . . . , bl].

One uses the entire certificate in order to validate that
a particular string correctly names a particular bit-string
document, first by checking that the putative name was cor-
rectly extracted from the certificate, and then by following
the usual validation procedure for the document-certificate
pair (recomputing the path from the leaf to the root of the
tree).

To be precise, V operates as follows, given as inputs a
document x, a name n = [t; bl , . . . , bl], and a certificate c =
[t’; (a I a;), -. - I (zl, bi)]: First, V checks that t = t’ and that
each b, = ai. Next, V computes yl + h(x) and then (for
i-1 . . . I) if bi = L then yi.+l + h(zi * yi) else if b, = R
then ya+l - h(yi . G). Finally, V queries R for the hash
value stored at location t, and checks that it is identical to
yl+l. V accepts if all these checks are satisfied and rejects
otherwise.

Figure 1 below illustrates the tree built by S for a time
interval during which it received eight requests, containing
the eight hash values a, b, c, d, e, f, g, and h. In this diagram,
ab is the hash of the concatenation of a and b, etc., and IHt
and IHI- are the respective interval hashes for the current
and the previous intervals. The certificate computed by S
for the third request (the one containing hash value c), for
example, is t.he following:

[t; (4 R), (4 L), (eh, R), (IL-l, L)].

3.1 Security

The security of thii naming scheme follows directly from the
infeasibility of computing hash collisions for functions from
{HJ:}~, since the only possible counterfeit names include
hash collisions. In essence, if x is a bit-string on which
N was never invoked during a run, any triple (x, n, c) that
V will accept, (after the correct response to a query to R)
will include a hash collision for the function h announced by
S at the beginning of the run: either x itself or one of the
hash values zt in c (when combined on the left or the right
with y,) collides with another argument to h whose hash
value was computed during the run. Therefore we have the
following theorem.

Theorem 1 If { Hk}k is a family of collision-free hash func-
tions, then the naming scheme [N, V, S] described aboue is
secure.

Because the reduction in the proof is so direct, it is easy
to give an “exact security” analysis (cf. [Lev 85, BKR 941) of

the strength of this scheme, whether the hash functions used
are from the collision-free family provided by a theoretical
cryptographic assumption or rather practical hash functions,
as in the implementations described in $6 below.

3.2 Variations on the scheme

Of course, the secure verifiability of the names assigned by
the scheme described above does not depend on the partic-
ular combination of binary trees and linked lists used. By
systematically invoking the hash function on pairs or or-
dered lists of hash values, new hash values can be computed
from old ones so as to form a directed acyclic graph (by di-
recting an edge from each of the inputs to the hash value
output). Design considerations (including those discussed
in $6.1 below) may dictate several different combinatorial
structures for this directed graph.

Whatever the structure of the growing graph of hash
values, it is secured by making portions of the graph widely
witnessed and widely available. To insure the verifiability
of the names, it suffices that every document in the naming
structure be linked by a directed path to a widely witnessed
hash value; a standard ordering of the incoming edges at
each node can be used to encode the path. Then the name
of a document is given by this encoding of its location in the
graph, together with a pointer to the hash value at the end
of the path, and the argument of Theorem 1 applies.

For example, in one variation of the scheme described
above, a list of documents may be used to build a local tree
(following Merkle, again), whose root is sent off in turn as a
request to the coordinating server. The location information
for a document in this “tree-of-trees” scheme can be written
as a position in the server’s tree followed by a position in
the local tree.

In another variation, the widely witnessed hash values
in the repository could consist simply of a linked list (as
in the simple linking scheme of [HS 911). In this case the
location information for a document is a simple pointer into
the repository.

4 Applications

The problem of naming digital documents might have seemed
like a curiosity only a few years ago. However, with the
growth in use of the Internet, more and more people need to
be able to refer confidently to meaningful bit-sequences. The
problem is now a matter of immediate practical concern.

The problem has become especially acute with the emer-
gence of the World-Wide Web. Jumping from one URL
(Uniform Resource Locator) to the next in a sequence of
WWW documents may seem at first to be exactly analo-
gous to following a bibliographic reference in a traditional
scholarly paper. In fact it is something quite different: a
URL is only a pointer to a location, with no guarantee that
what a user finds there today is the same reference that
the author originally intended. If on-line citations include
secure names for the bit-string contents of the documents
cited, then it is possible to traverse a path of citations with
confidence that one is indeed following the authors’ inten-
tions. This abiity would be especially useful for the many
documents on the World-Wide Web that exist only on-line.

In most electronic commerce systems, transaction records
of all sorts are kept on-line, and it would be useful to have a
cryptographically secure means of assigning serial numbers
or tracking numbers to these records.

31

-.-~____-. -. -

I

IH
t

ah

ad

P

/

eh

ab cd

A A A A
a b c d e f 9 h

Figure 1: 8-leaf tree for the example of $3.

32

Software code is another class of digital document for
which it would be useful to have an easy way for a short
name to carry a guarantee of integrity. A user who down-
loads software (along with its naming certificate) from a site
on the Net can be sure of its integrity if he or she is able to
check that the code is correctly named by a short string of
letters and numbers. Here, of course, bit-string equality is
eractly t.he point. The great strength of using secure names
in thii application is that the short name of a program is
considerably easier to distribute widely and robustly than
t,he program itself. (It is also easier to distribute reliably
than the sort of public-key infrastructure information that
is required in order to use digital signatures in order to val-
idate the integrity of code.)

For another example of a type of large digital document
whose integrity matters a great deal, consider the case of ge-
netic data. Scientists now routinely download others’ data
sets for use in their own research. The use of our naming
scheme would allow the user to be sure of the data’s in-
tegrity, as well as providing a convenient and verifiable way
to cite the data in published descriptions of the work that
was done with it.

5 Long-lived names

The technique described in [BHS 931 for renewing crypto-
graphic certifications of authenticity applies directly to the
certificates of the present naming scheme.

The renewing process works as follows. Let us suppose
that an implementation of a particular time-stamping sys-
tem is in place, and consider the pair (z,C), where C is a
valid time-stamp certificate (in thii implementation) for the
bit,-string X. Now suppose that an improved time-stamping
system is implemented and put into practice-by replacing
the hash function used in the original system with a new
hash function, or even perhaps after the invention of a com-
pletely new algorithm. Further suppose that the pair (2, C)
is time-stamped by the new system, resulting in a new cer-
tificate C’, and that. some time later, i.e. at a definite later
date, the original method is compromised. C’ provides evi-
dence nob only that the document contents x existed prior
to the time of the new time-stamp, but that it existed at the
time stated in the original certificate, C; prior to the com-
promise of the old implementation, the only way to create a
certificate was by legitimate means. (It is similarly recom-
mended that if a digitally signed document is likely to be
important for a long time-perhaps longer than the signer’s
key will be valid-then the document-signature pair should
be time-stamped [BHS 93, Odl 95, HKS 951.)

In our naming schemes, the verifiable name for the bit-
string x is a standard abbreviation a for its original certifi-
cate C. In order that a continue to be verifiable as a name for
t, t,he certificate C should be renewed (as above) from time
to time as new time-stamping systems are put in place. As
long as this is done, a is still a verifiable name for x. There
is now an addit,ional step to the procedure for validating the
name: after checking that a is correctly extracted from C,
one must follow the usual time-stamp validation procedure
for the certificate, which now includes both the original-
system validation of (x,C) and the new-system validation
of [(x, C), C’]. We note that in practice thii additional vali-
dation step would be automated, and would not at all affect
the convenient use of a to name x.

33

6 Practical implementations

A practical implementation of a naming scheme cannot use
the known theoretical constructions of collision-free hash
functions. If the decision is made to use practical one-may
hash functions such as MD5, then users of the system do
not need to trust the server’s random choice of a function
h E Hk. (However, they do have to hope that the hash
function chosen is one-way in practice; see section $5 for one
way to allay users’ concerns on this score.)

The naming scheme described in 53 above, based on the
digital time-stamping scheme described in $2.4, was imple-
mented by Surety Technologies, and has been in continuous
commercial use since January 1995. The implementation
uses practical hash functions; SpecificaIly, the current im-
plementation uses h(x) = (MD5(x),SHA(x)) as the hash
value for any argument x. A number of supplemental mech-
anisms are employed in order to maintain the integrity and
wide distribution of the repository [Sur 951.

The names assigned by our scheme are indeed concise,
growing essentially as slowly as possible while still providing
unique names. If the repository contains n interval hashes,
and no more than m naming requests are received during
each interval, the names can be written with at most lg, nm
bits. Just to give a numerical example, a repository repre-
senting a thousand requests per minute for the length of a
century requires 36-bit names; in the MIME encoding (six
bits per alphanumeric character) such a name can be jotted
down with six characters, while hash-value names of this
length are completely insecure.

6.1 Meaningful names

There are several variations of our naming scheme that allow
an author a fair measure of control over the names of his or
her documents, so that the author can choose a verifiable
name that is meaningful in one or another useful way.

First, and most obviously, observe that in the scheme
described in detail in $3 a convenient way to encode the
location in the repository to which a document’s contents
are linked is by the date and time at which the interval
hash at that location was computed. Instead of (e.g.) a
MIME encoding of the number of seconds since a moment
in early 1970 (Unix standard time), it would often be useful
to express at least a part of this date and time in human-
readable form.

In a slight variation, we can allow “personalized” naming
requests, as follows. Suppose that the repository items are
formatted in a standard way every day, and let F(e) denote
any standard mapping from ASCII-encoded strings to the
list of daily repository locations. When the server receives a
personalized naming request that includes the ASCII string
s, the request is held until the appropriate moment in the
day and then linked to the widely witnessed hash value
stored at location F(s); in this way, s is made to be part of
the name of the documents included in those special nam-
ing requests. Thus, for example, the author of The History
of Computers in Zurich can arrange for the verifiable name
of its bit-string contents to have the form [“The History of
Computers in Zurich” date suffix], where suffix includes
a few bits of disambiguating information that distinguishes
this request from all others that mere linked to the same
repository location.

In another example, consider the tree-of-trees variation
briefly mentioned in $3.2. An author can name a multi-part
document by placing the contents of each successive part at

k i

1

(

> j

consecutive leaf nodes of a local tree. The resulting request
to the server gives the consecutive parts of the document
consecutive local positions and therefore consecutive names.
Furthermore, the other portions of these consecutive names
are identical, explicitly encoding the fact that they are parts
of the same document. And local trees can have sub-trees, so
that our historian can arrange to name the ith section of the
jth chapter of his masterpiece [“The History of Computers
in Zurich” infix if, for all appropriate pairs (i,j).

More complicated ways of structuring the parts of a doc-
ument can similarly be encoded in the verifiable names as-
signed by our naming scheme. Note that conventional nam-
ing schemes do allow for encoding document structure into
names, but not in a verifiable manner.

In another variation, a table of contents for a long or
complicated multi-part document can be included in a stan-
dard place in the request-for example, as its last piece. The
table of contents may contain more or less detailed descrip-
tions of the parts of the document. At a later time, together
with a list of documents to be authenticated and their cer-
tificates, such an authenticated table of contents can be used
to verify (1) that each document in the list is an exact copy
of one that was registered with the table of contents, and
(2) that none of the documents in the list are missing.

Acknowledgements

We would like to thank Ralph Merkle, R. Venkatesan, Matt
Franklin, Avi Rubin, Bill Arms, and Dave Richards for help-
ful discussions about this work. We would also like to thank
the anonymous referees for their very useful suggestions.

References

[BHS 931

[BKR 941

[BY 901

[BD+ 951

[Dam 871

D. Bayer, S. Haber, and W.S. Stornetta. Im-
proving the efficiency and reliability of digi-
tal time-stamping. In Sequences II: Method3 in
Communication, Security, and Computer Sci-
ence, ed. R.M. Capocelli, A. De San&, U. Vac-
care, pp. 329-334, Springer-Verlag, New York
(1993).

M. Bellare, J. Kilian, and P. Rogaway. The
security of cipher block chaining. In Advances
in Cryptology-Crypt0 ‘94, Lecture Notes in
Computer Science, Vol. 839, ed. Y. Desmedt,
pp. 94-107, Springer-Verlag (1994).

G. Brassard and M. Yung. One-way group ac-
tions. In Advances in Cryptology-Crypt0 ‘90,
Lecture Notes in Computer Science, Vol. 537,
pp. 94-107, Springer-Verlag (1991).

S. Browne, J. Dongarra, S. Green, K. Moore,
T. Pepin, T. Rowan, and R. Wade. Location-
independent naming for virtual distributed
software repositories. Univeristy of Tennessee
Computer Science TR 95-278 (1995). (Avail-
able at http: //www . cs .utk. edu/Nlibrary/
TechFLeports/l995/).

I. Damgird. Collision-free hash functions and
public-key signature schemes. In Advances in
Cryptology-Eurocrypt ‘87, Lecture Notes in
Computer Science, Vol. 304, pp. 203-217,
Springer-Verlag (Berlin, 1988).

I

I 34

[Dob 96a]

[Dob 96b]

[Dob 96c]

[DBP 961

[HKS 951

[HS 911

[KW 951

[Lev 851

[Merk 801

[M 941

[NIST 941

[Odl 951

[Pre 931

[Riv 921

H. Dobbertin. Cryptanalysis of MD4. In Fast
Software Encryption, Lecture Notes in Com-
puter Science, Vol. 1039, ed. D. Gollman,
pp. 53-69, Springer-Verlag (Berlin, 1996).

H. Dobbertin. Cryptanalysis of MD5 com-
press. Private communication (May 1996).
Described by B. Preneel, Rump Session, Eu-
rocrypt ‘96 (May 1996).

H. Dobbertin. The status of MD5 after a re-
cent attack. CrytoBytea, Vol. 2, No. 2 (Summer
1996).

H. Dobbertin, A. Bosselaers, and B. Prc-
neel. RIPEMD-160: A strengthened version of
RIPEMD. In Fast Software Encryption, Lcc-
ture Notes in Computer Science, Vol. 1039,
ed. D. Gollman, pp. 71-82, Springer-Vcrlag
(Berlin, 1996).

S. Haber, B. Kaliski, and W.S. Stornetta. How
do digital time-stamps support digital signa-
tures? CryptoBytea, Vol. 1, No. 3 (Autumn
1995). (Available at http://www.rsa.com/
rsalabs/pubs/cryptobytes.html.)

S. Haber and W.S. Stornetta. How to time-
stamp a digital document. Journal of Cryptol-
ogy, Vol. 3, No. 2, pp. 99-111 (1991).

R. Kahn and R. Wilensky. A framework for
distributed digital object services. Corporation
for National Research Initiatives technical rc-
port cnri.dlib/tn95-01 (May 1995). (Available
athttp://www.cnri.reston.va.us/.)

L.A. Levin. One-way functions and pseudo-
random generators. In Proceedings of the 17th
Annual Symposium on Theory of Computing,
pp. 363-365, ACM (1987).

R.C. Merkle. Protocols for public key cryp
tosystems. In Proc. 19SO Symposium on Sc-
curity and Privacy, IEEE Computer Society,
pp. 122-133 (April 1980).

J.W. Moore. The use of encryption to en-
sure the integrity of reusable software com-
ponents. In Proc. 3rd International Conf. on
Software Reusability, IEEE Computer Society
Press (November 1994).

National Institute of Standards and Tcch-
nology. Secure Hash Standard. NIST Federal
Information Processing Standard Publication
180-l (May 1994).

A. Odlyzko. The future of integer factorixa-
tion. CrytoBytea, Vol. I, No. 2 (1995).

B. Preneel. Analysis and Design of Cryp-
tographic Hash Functions. Ph.D. disserta-
tion, Katholieke Universiteit Leuven (January
1993).

R. Rivest. The MD5 Message-Digest Algo-
rithm. Internet Network Working Group Rc-
quest for Comments 1321 (April 1992).

P 951 A. Rubin. Trusted distribution of software over
the Internet. In Internet Society 1995 Sympo-
sium on Network and Distributed System Se-
curity (1995).

[SM 941 K. SoIIins and L. Masinter. Functional require-
ments for Uniform Resource Names. Internet
Network Working Group Request for Com-
ments 1737 (December 1994).

[Sur 951 Surety Technologies, Inc. Answers to Fre-
quently Asked Questions about the Digital
Not,aryTh’ System. http://uuu.surety.com
(since January 1995).

35

- - - ~_-.. --- ___-

